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Abstract
Kernel-level rootkits affect system security by modifying

key kernel data structures to achieve a variety of malicious
goals. While early rootkits modified control data structures,
such as the system call table and values of function point-
ers, recent work has demonstrated rootkits that maliciously
modify non-control data. Prior techniques for rootkit detec-
tion fail to identify such rootkits either because they focus
solely on detecting control data modifications or because
they require elaborate, manually-supplied specifications to
detect modifications of non-control data.

This paper presents a novel rootkit detection technique
that automatically detects rootkits that modify both control
and non-control data. The key idea is to externally observe
the execution of the kernel during a training period and hy-
pothesize invariants on kernel data structures. These invari-
ants are used as specifications of data structure integrity
during an enforcement phase; violation of these invariants
indicates the presence of a rootkit.

We present the design and implementation of Gibraltar,
a tool that uses the above approach to infer and enforce
invariants. In our experiments, we found that Gibraltar
can detect rootkits that modify both control and non-control
data structures, and that its false positive rate and monitor-
ing overheads are negligible.

1. Introduction
Kernel-level rootkits are a form of malicious software

that compromise the integrity of the operating system. Such
rootkits stealthily modify kernel data structures to achieve
a variety of malicious goals, which may include hiding ma-
licious user space objects, installing backdoors and trojan
horses, logging keystrokes, disabling firewalls, and includ-
ing the system into a botnet. Recent studies have shown
a phenomenal increase in the number of malware that use
stealth techniques commonly employed by rootkits. For
example, a report by MacAfee Avert Labs [8] observes a
600% increase in the number of rootkits in the three year
period from 2004-2006. Indeed, this trend continues even
today; over 200 rootkits were discovered in the first quarter
of 2008 alone (according to the forum antirootkit.com [1]).

The increase in the number and complexity of rootkits
can be attributed to the large and complex attack surface
that the kernel presents. The kernel manages several hun-
dred heterogeneous data structures, most of which are crit-

ical to its correct operation; a rootkit can subvert kernel
integrity by subtly modifying any of these data structures.
In particular, kernel data structures that hold control data,
such as the system call table and jump tables, have long
been a popular target for attack by rootkits. However, re-
cent work has demonstrated rootkits that achieve a variety
of malicious goals by modifying non-control data in the ker-
nel. For example, Petroni et al. [25] demonstrate a rootkit
that hides a malicious user space process by manipulating
linked lists used by the kernel for bookkeeping. Similarly,
Baliga et al. [10] demonstrate rootkits that degrade applica-
tion performance by modifying memory management meta
data and those that affect the output of the pseudo random
number generator by contaminating entropy pools. In sum-
mary, non-control data presents a much larger attack surface
than control data, and these rootkits serve to demonstrate
the ease with which attackers can subtly modify non-control
data structures to subvert the kernel.

Prior techniques to detect rootkits that modify non-
control data [25] have required elaborate specifications of
kernel data structure integrity. These specifications are sup-
plied by an expert who has a detailed understanding of ker-
nel data structure semantics. Kernel data structures are con-
tinuously monitored during runtime against these specifica-
tions, and violations are used as indicators of rootkit be-
havior. While this approach has the advantage of detecting
sophisticated rootkits, developing specifications is currently
a manual procedure. Because the kernel maintains several
hundred data structures, the specification writer could either
fail to supply certain integrity specifications, e.g., because
he is unaware that they exist, or may fail to realize how a
rootkit could exploit them.

We propose a novel approach based upon automatic in-
ference of data structure invariants that can uniformly de-
tect rootkits that modify both control and non-control data.
The key idea is to monitor the values of kernel data struc-
tures during a training phase, and hypothesize invariants
that are satisfied by these data structures. These invari-
ants include properties of both control and non-control data
structures, and serve as specifications of data structure in-
tegrity. For example, an invariant could state that the values
of elements of the system call table are a constant (an exam-
ple of a control data invariant). Similarly, an invariant could
state that all the elements of the running-tasks linked
list (used by the kernel for process scheduling) are also ele-
ments of the all-tasks linked list that is used by the kernel
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for process accounting (an example of a non-control data
invariant) [25]. These invariants are then checked during
an enforcement phase; violation of an invariant indicates
the presence of a rootkit. Because invariants are inferred
automatically and uniformly across both control and non-
control data structures, the approach presented in this pa-
per overcomes the shortcomings of prior rootkit detection
techniques.

To evaluate the viability of this approach, we built
Gibraltar, a rootkit detection tool that automatically infers
invariants on kernel data structures. Gibraltar periodically
captures snapshots of kernel memory via an external PCI
card. It uses these snapshots to reconstruct kernel data struc-
tures, and adapts Daikon [14], an invariant inference tool
for application programs, to infer invariants on kernel data
structures. In experiments with twenty rootkits, including
those that modify non-control data, we found that Gibraltar
detected all rootkits with a false positive rate of just 0.65%,
and imposed a runtime monitoring overhead of under 0.5%.

In summary, this paper makes the following contribu-
tions:
• Rootkit detection via invariant inference. We propose
a novel approach that detects rootkits by identifying viola-
tions of automatically-inferred kernel data structure invari-
ants. Section 3 presents an overview of our approach, and
presents examples of both control and non-control data at-
tacks that it detected in our experiments.
• Design and implementation of Gibraltar. We present
Gibraltar, a prototype tool that uses the above approach for
rootkit detection; Section 4 presents the design and imple-
mentation of Gibraltar.
• Evaluation on real-world rootkits. We present a com-
prehensive evaluation of Gibraltar on twenty rootkits that
affect both control and non-control data structures and show
that Gibraltar can detect all of them, with a low false posi-
tive rate and negligible monitoring overhead (Section 5).

2. Related work
The evolution of rootkits and techniques to detect them

has traditionally been an arms race between attackers and
defenders. Early rootkits operated by replacing system bi-
naries on disk with trojaned versions. These were countered
with tools such as Tripwire [18], which checked the authen-
ticity of system files. Tools such as Strider Ghostbuster [11]
were developed to detect rootkits based on their hiding be-
havior by comparing kernel level view with the user level
view.

Modern rootkits have evolved to modifying the kernel.
Most rootkits either modify kernel code, or data structures
that store control data, such as the system call table. Be-
cause these rootkits affect the kernel itself, runtime detec-
tion tools must execute on an entity that is outside the con-
trol of the kernel. Prior work has developed both virtual
machine-based (e.g., [16, 21]) and hardware co-processor
based infrastructures (e.g., [17, 36]), which allow rootkit de-
tection tools to securely observe the runtime execution state
of the kernel. In this paper, we use an external PCI-card to
periodically fetch snapshots of kernel memory, which are
then processed by Gibraltar. Other rootkits install them-

selves outside the control of the operating system such as
virtual machine based rootkits, which install a virtual ma-
chine underneath the operating system [19] or exist inde-
pendently by using hardware mechanisms to conceal them-
selves [13]. Such rootkits cannot be detected by monitoring
the operating system and therefore need other techniques
for detection.

Runtime rootkit detection tools themselves can be im-
plemented in one of several ways. Livewire [16], CoPi-
lot [17] and several commercial tools (e.g., [34, 7, 6, 2])
periodically scan and check the authenticity of kernel code
and key control data structures, such as the system call ta-
ble and jump tables. They typically do so by comparing
a cryptographic hash of the memory area containing these
data structures against pre-specified values. SBCFI [26] en-
forces a more sophisticated policy that periodically scans
function pointers in kernel memory and ensures that they
point to pre-approved locations, e.g., addresses of exported
kernel functions.

An alternative to the above runtime techniques are tools
that pro actively scan kernel modules and device drivers to
determine whether they are malicious. These include both
signature-matching techniques as employed by most com-
mercial malware detection tools, and symbolic execution
tools [35, 20], which statically approximate the behavior of
a kernel module to determine whether it likely affects key
kernel data structures. Another alternative is to detect rootk-
its using attestation-based techniques [32, 31, 30, 15, 29].

In this paper, our focus is on recently-proposed rootkits
that affect non-control data structures in the kernel [25, 10].
In contrast to rootkits that hijack kernel control flow, these
rootkits operate by modifying kernel data structures to hide
user-space processes [25], affect application performance,
or affect the output of the kernel’s pseudo random number
generator [10]. Existing rootkit detection tools (discussed
above) do not monitor non-control data structures and there-
fore cannot detect such rootkits. We believe that as detec-
tion tools mature to identify attacks that hijack kernel con-
trol flow, rootkits will increasingly evolve to subverting the
kernel by modifying non-control data. To detect such rootk-
its, Petroni et al. [25] have proposed a specification-based
architecture. In this architecture, data structures in kernel
memory are periodically checked against integrity specifi-
cations. These specifications describe key semantic proper-
ties of data structures, which must hold during normal exe-
cution of the kernel; violation of any of these specifications
indicates the presence of a rootkit. While this technique has
the advantage of being able to detect rootkits that modify
both control and non-control data, it requires the integrity
specifications to be developed manually.

3. Rootkit detection via invariant inference
This section motivates the use and effectiveness of data

structure invariants at detecting rootkits by presenting six
previously demonstrated attacks that employ stealth tech-
niques [10, 33, 25]. These attacks either modify non-
control kernel data (cf. Attacks 1-4) or modify kernel con-
trol data (cf. Attacks 5 and 6). Each of these attacks is suc-
cessfully detected by Gibraltar; where applicable, we also
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discuss existing tools that can detect each attack.
For each attack presented below, we also describe a data

structure invariant (automatically inferred by Gibraltar by
observing the execution of an uncompromised kernel) that
is violated by the attack. In addition, we also describe the
semantic meaning of each invariant, i.e., the reason why a
data structure satisfies the property specified by the invari-
ant in an uncompromised kernel. The invariants listed in
this section are examples drawn from several thousand in-
variants that are automatically inferred by Gibraltar. Par-
ticularly noteworthy in the examples below is the hetero-
geneity of the data structures over which Gibraltar infers
invariants. Although these invariants can be examined, in-
terpreted and refined by a security expert, Gibraltar, by de-
fault, automatically uses these invariants as specifications of
data structure integrity.

3.1. Attack 1: Entropy pool contamination

The kernel uses the pseudo random number generator
(PRNG) to obtain randomness needed to seed several other
security-critical applications. The goal of the entropy pool
contamination attack [10] is to contaminate entropy pools
and associated polynomials used by the PRNG, so as to de-
grade the quality of random numbers that it generates.
• Attack. The PRNG uses the primary and secondary en-
tropy pools to generate random numbers. The primary pool
derives entropy from external events such as keystrokes,
mouse movements, disk and network activity. As a request
arrives for a random number, the kernel extracts bytes from
the primary pool and moves them to the secondary pool.
Bytes extracted from the secondary pool are in turn used to
provide random numbers to kernel functions and user-level
applications.1

To ensure that the numbers generated by the PRNG are
pseudo random, the contents of the pools are updated us-
ing a stirring function each time bytes are extracted from
the pools. The stirring function uses a polynomial whose
coefficients are specified in five integer fields of a struct
poolinfo data structure, namely tap1, tap2, tap3, tap4
and tap5. This attack zeroes the coefficients of the polyno-
mial, which renders ineffective, part of the algorithm used
to extract bytes from the pool. It also writes zeroes con-
stantly into the entropy pools. Consequently, the numbers
generated by the PRNG are no longer random.
• Invariants. Figure 1 shows the invariants that Gibral-
tar identifies for the coefficients of the polynomial that is
used to stir entropy pools in an uncompromised kernel (the
poolinfo data structure shown in this Figure is repre-
sented in the kernel by one of random state->poolinfo
or sec random state->poolinfo). The coefficients are
initialized upon system startup, and must never be changed
during the execution of the kernel. The attack violates these
invariants when it zeroes the coefficients of the polynomial.
Gibraltar detects this attack when the invariants are violated.

1For ease of presentation, we have simplified some details of the attacks
presented in Section 3. For full details of each attack, please consult the
original references.

poolinfo.tap1 ∈ {26, 103}
poolinfo.tap2 ∈ {20, 76}
poolinfo.tap3 ∈ {14, 51}
poolinfo.tap4 ∈ {7, 25}
poolinfo.tap5 == 1

Figure 1. The invariants satisfied by the coefficients of
the polynomial used by the stirring function in the PRNG.
The coefficients are fields of a struct poolinfo data
structure, shown above as poolinfo. These invariants
are violated by the entropy pool contamination attack (Sec-
tion 3.1).

run-list ⊆ all-tasks

Figure 2. The invariant that detects the process hiding
attack (Section 3.2). In this attack, a task that is not in the
all-tasks linked list appears in the run-list linked list,
which is used by the kernel’s task scheduler.

3.2. Attack 2: Process hiding
The goal of this attack is to hide a (possibly malicious)

user-space process from the system utilities, such as ps.
The attack operates by modifying the contents of the ker-
nel linked lists used for process accounting and schedul-
ing [25, 3].
• Attack. This attack relies on the fact that process ac-
counting utilities, such as ps, and the kernel’s task sched-
uler consult different process lists. The process descrip-
tors of all tasks running on a system belong to a linked
list called the all-tasks list (represented in the kernel by
the data structure init tasks->next task). This list con-
tains process descriptors headed by the first process created
on the system. The all-tasks list is used by process ac-
counting utilities. In contrast, the scheduler uses a second
linked list, called the run-list (represented in the kernel
by run queue head->next), to schedule processes for ex-
ecution.

The process hiding attack removes the process descrip-
tor of a malicious user-space process from the all-tasks
list (but not from the run-list list). This ensures that the
process is not visible to process accounting utilities, but that
it will still be scheduled for execution.
• Invariants. Figure 2 presents the invariant automatically
discovered by Gibraltar. When a rootkit attempts to remove
a task from the all-tasks list, this invariant is violated,
and is therefore detected by Gibraltar. We note that this at-
tack was previously described by Petroni et al. [25] as an
example of a non-control data attack. They also describe an
invariant enforcement tool to detect such attacks; however,
in contrast to Gibraltar, their enforcement tool requires data
structure invariants, such as the one in Figure 2, to be sup-
plied manually by a security expert.

3.3. Attack 3: Adding binary formats
The goal of this attack is to invoke malicious code each

time a new process is created on the system [33]. While
rootkits typically achieve this form of hooking by modify-
ing kernel control data, such as the system call table, this
attack works by inserting a new binary format into the sys-
tem.



www.manaraa.com

length(formats) == 2

Figure 3. Invariant inferred on the formats list; the at-
tack discussed in Section 3.3 modifies the length of this list.

zone table[1].pages min == 255
zone table[1].pages low == 510
zone table[1].pages high == 765

Figure 4. Invariants inferred by Gibraltar for
zone table[1], a data structure of type struct
zone struct (Gibraltar infers similar invariants for other
elements of the zone table array).

• Attack. This attack operates by introducing a new binary
format into the list of formats supported by the system. The
handler provided to support this format is malicious in na-
ture. The binary formats supported by a system are main-
tained by the kernel in a global linked list called formats.
The binary handler, specific to a given binary format, is also
supplied when a new format is registered.

A new process is created on the system, the kernel
creates the process address space, sets up credentials and
in calls the function search binary handler, which is
responsible for loading the binary image of the process
from the executable file. This function iterates through the
formats list to look for an appropriate handler for the bi-
nary that it is attempting to load. As it traverses this list, it
invokes each handler in it. If a handler returns an error code
E, the kernel considers the next handler on the list;
it continues to do so until it finds a handler that returns the
code S.

This attack works by inserting a new binary format in
the formats list and supplying the kernel with a malicious
handler that returns the error code E each time it is
invoked. Because the new handler is inserted at the head
of the formats list, the malicious handler is executed each
time a new process is executed.
• Invariants. Gibraltar infers the invariant shown in Fig-
ure 3 on the formats list on our system, which has two
registered binary formats. The size of the list is constant af-
ter the system starts, and changes only when a new binary
format is installed. Because this attack inserts a new bi-
nary format it changes the length of the formats list violat-
ing the invariant in Figure 3; consequently, Gibraltar detects
this attack.

3.4. Attack 4: Resource wastage
This attack creates artificial pressure on the memory sub-

system [10], thereby forcing the memory management al-
gorithms to constantly free memory by swapping pages to
disk. In spite of the availability of free memory, this mem-
ory is not used either by the kernel or by user-space appli-
cations. Continuous swapping to disk also affects the per-
formance of the system.
• Attack. The kernel’s memory management unit en-
sures that there are always free pages in memory to fulfil
allocation requests made both from the kernel and user-
space applications. To do so, it employs memory balanc-
ing algorithms that use three watermarks to gauge mem-

nf hooks[2][1].next.hook == 0xc03295b0

Figure 5. An invariant inferred for the netfilter hook.
Firewalls are disabled by modifying the function pointer,
thereby violating the invariant.

ory pressure, namely, the fields pages min, pages low
and pages high, of a struct zone struct data struc-
ture. When the number of free pages in the system drops be-
low the pages low watermark, the kernel asynchronously
swaps unused pages to disk. This process continues until
the number of pages reaches the pages high watermark.
In contrast, if the number of free pages available drops be-
low the pages min watermark, the kernel synchronously
swaps pages to disk.

This attack manipulates the three watermarks and sets
their values close to the number of free pages in the system.
Consequently, the number of free pages frequently drops
below the pages min and pages low watermarks, forcing
the kernel to continuously swap pages to disk, thereby cre-
ating synthetic memory pressure in the system.
• Invariants. Gibraltar identifies the invariants shown
in Figure 4 for the three watermarks. These values
are initialized upon system startup, and typically do not
change in an uncompromised kernel. The attack sets the
pages min, pages low and pages high watermarks to
210, 000, 215, 000 and 220, 000 respectively. The values
of these watermarks is close to 225,280, which is the total
number of pages available on our system. Gibraltar detects
this attack because the invariants shown in Figure 4 are vi-
olated.

3.5. Attack 5: Disabling firewalls

The goal of this attack is to stealthily disable firewalls in-
stalled on the system [10]; a user is unable to determine that
firewalls have been disabled using the iptables utility. In-
stead, iptables shows the firewall rules that were created
for the system, and the firewall appears to be enabled.
• Attack. This attack overwrites hooks in the Linux
netfilter framework, which is a packet filtering frame-
work in the Linux kernel. It provides hooks at multiple
points in the networking stack, and was designed for ker-
nel modules to register callbacks for packet filtering, packet
mangling and network address translation. The iptables
command line utility enforces firewall rules through the
netfilter framework. Pointers to the netfilter hooks
are stored in a global table called nf hooks. This attack
overwrites the hooks for the IP protocol, and instead sets
them to point to the attack function, thereby effectively dis-
abling the firewall. The table where the firewall rules are
stored is unaltered and therefore displayed by iptables
when the user manually inspects the firewall.
• Invariants. Gibraltar inferred the invariant shown in Fig-
ure 5 for netfilter. The attack overwrites the hook with
the attack function, thereby violating the invariant that func-
tion pointer nf hooks[2][1].next.hook is a constant.

Because this attack modifies kernel function pointers, it
can also be detected by SBCFI [26], which automatically
extracts and enforces kernel control flow integrity. In fact,
function pointer invariants inferred by Gibraltar implicitly
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random fops.read == 0xc028bd48
urandom fops.read == 0xc028bda8

Figure 6. Invariants inferred for the PRNG function
pointers. These are replaced to point to attacker-specified
code, thereby disabling the PRNG.

determine a control flow integrity policy that is equivalent to
SBCFI. However, in contrast to SBCFI, Gibraltar can also
detect non-control attacks, such as Attacks 1-4, discussed
above.

3.6. Attack 6: Disabling the PRNG
This attack overwrites the addresses of the functions reg-

istered with the virtual file system layer by the PRNG [10].
The overwritten values point to functions that always return
zero or an attacker-defined sequence when random bytes are
requested from the PRNG; the PRNG’s functions are never
executed.
• Attack. The kernel provides two devices /dev/random
and /dev/urandom from which random numbers can be
read. The data structures used to register the device func-
tions are random fops and urandom fops, both of which
are variables of type struct file operations. These
data structures have function pointers to the various func-
tions provided by the PRNG. The attack replaces the gen-
uine function pointers for the read function within these
data structures. After the attack has infected the kernel, ev-
ery byte read from the two devices simply returns a zero.
The original PRNG functions are never called.
• Invariants. The invariants inferred by Gibraltar on our
system for the random fops and urandom fops are shown
in Figure 6. The attack code changes the values of the above
two function pointers, violating the invariants. As with At-
tack 5, this attack can also be detected using SBCFI.

4. Design and implementation of Gibraltar
Because Gibraltar aims to detect rootkits, it must exe-

cute on an entity that is outside the control of the monitored
kernel, such as a coprocessor [17, 36] or inside a separate
virtual machine [16]. In our architecture, Gibraltar executes
on a separate machine (the observer) and monitors the exe-
cution of the target machine (the target). Both the observer
and the target are interconnected via a secure back-end net-
work using the Myrinet PCI intelligent network cards [4] 2.
The back end network allows Gibraltar to remotely access
the target kernel’s physical memory. Gibraltar is built to
infer data structure invariants when supplied with raw ker-
nel memory as input. Since coprocessor and VMM based
external monitors use a similar asynchronous monitoring
technique to read the target memory, Gibraltar can be easily
adapted to work with these infrastructures.

Figure 7 presents the architecture of Gibraltar. It op-
erates in two modes, namely, a training mode and an en-
forcement mode. In the training mode, Gibraltar infers in-
variants on data structures of the target’s kernel. Training

2Prior work [28] shows that PCI- and co-processor-based monitoring
techniques are bypassable. However, Gibraltar operates with any technique
that can securely fetch memory pages from the target machine, e.g., VMM-
based monitors.

Figure 7. Boxes with solid lines show components of
Gibraltar. Boxes with dashed lines show data used as in-
put or output by the different components.

happens in a controlled environment on an uncompromised
target (e.g., a fresh installation of the kernel on the target
machine). In the enforcement mode, Gibraltar ensures that
the data structures on the target’s kernel satisfy the invari-
ants inferred during the training mode.

As shown in Figure 7, Gibraltar consists of four key com-
ponents (shown in the boxes with solid lines). The page
fetcher responds to requests by the data structure extrac-
tor to fetch kernel memory pages from the target. The data
structure extractor, in turn, extracts values of data structures
on the target’s kernel by analyzing raw physical memory
pages. The data structure extractor also accepts as input
the data type definitions of the kernel running on the target
machine and a set of root symbols that it uses to traverse
the target’s kernel memory pages. Both these inputs are
obtained via an off line analysis of the source code of the
kernel version executing on the target machine. The out-
put of the data structure extractor is the set of kernel data
structures on the target. The invariant generator processes
these data structures and infers invariants. These invariants
represent properties of both individual data structures, also
called objects, (e.g., scalars, such as integer variables and
arrays and aggregate data structures, such as structs) as well
as collections of data structures (e.g., linked lists). During
enforcement, the monitor uses the invariants as specifica-
tions of kernel data structure integrity, which raises an alert
when an invariant is violated by a kernel data structure. The
following sections elaborate on the design of each of these
components.

4.1. The page fetcher
Gibraltar executes on the observer, which is isolated

from the target system. Gibraltar’s page fetcher is a compo-
nent that takes a physical memory address as input, and ob-
tains the corresponding memory page from the target. The
target runs a Myrinet PCI card to which the page fetcher
issues a request for a physical memory page. Upon receiv-
ing a request, the firmware on the target initiates a DMA
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request for the requested page. It sends the contents of the
physical page to the observer upon completion of the DMA.
The Myrinet card on the target system runs an enhanced ver-
sion of the original firmware. Our enhancement ensures that
when the card receives a request from the page fetcher, the
request is directly interpreted by the firmware and serviced.

4.2. The data structure extractor
This component reconstructs snapshots of the target ker-

nel’s data structures from raw physical memory pages. The
data structure extractor processes raw physical memory
pages using two inputs to locate data structures within these
pages. First, it uses a set of root symbols, which denote
kernel data structures whose physical memory locations are
fixed, and from which all data structures on the target’s heap
are reachable. In our implementation, we use the symbols in
the System.map file of the target’s kernel as the set of roots.
Second, it uses a set of type definitions of the data structures
in the target’s kernel. Type definitions are used as described
below to recursively identify all reachable data structures.
We automatically extracted 1292 type definitions by analyz-
ing the source code of the target Linux-2.4.20 kernel using
a CIL module [24].

The data structure extractor uses the roots and type def-
initions to recursively identify data structures in physical
memory using a standard worklist algorithm. The extractor
first adds the addresses of the roots to a worklist; it then is-
sues a request to the page fetcher for memory pages contain-
ing the roots. It extracts the values of the roots from these
pages, and uses their type definitions to identify pointers
to more (previously-unseen) data structures. For example,
if a root is a C struct, the data structure extractor adds
all pointer-valued fields of this struct to the worklist to
locate more data structures in the kernel’s physical mem-
ory. This process continues in a recursive fashion until all
the data structures in the target kernel’s memory (reachable
from the roots) have been identified. A complete set of data
structures reachable from the roots is called a snapshot. The
data structure extractor periodically probes the target and
outputs snapshots.

When the data structure extractor finds a pointer-valued
field, it may require assistance in the form of code annota-
tions to clarify the semantics of the pointer. In particular, the
data structure extractor requires assistance when it encoun-
ters linked lists, implemented in the Linux kernel using the
list head structure. In Linux, other kernel data structures
(called containers) that must be organized as a linked list
simply include the list head data structure. The kernel
provides functions to add, delete, and traverse list head
data structures. Such linked lists are problematic for the
data structure extractor. In particular, when it encounters a
list head structure, it will be unable to identify the con-
tainer data structure. To handle such linked lists, we use the
Container annotation. The annotation explicitly specifies
the type of the container data structure and the field within
this type, to which the list head pointers refer. The ex-
tractor uses this annotation and locates the container data
structure. In our experiments, we annotated all 163 anno-
tations of the list head data structure in the Linux-2.4.20
kernel.

In addition to linked lists, Gibraltar may also re-
quire assistance to disambiguate opaque pointers (void *),
dynamically-allocated arrays and untagged unions. For
example, the extractor would require the length of a
dynamically-allocated arrays in order to traverse and locate
objects in the array. We plan to add support for dynamic ar-
rays, opaque pointers and untagged unions in future work.

Because the page fetcher obtains pages from the target
asynchronously (without halting the target), it is likely that
the data structure extractor will encounter inconsistencies,
such as pointers to non-existent objects. Such invalid point-
ers are problematic because the data structure extractor will
incorrectly fetch and parse the memory region referenced
by the pointer (which will result in more invalid pointers
being added to the worklist of the traversal algorithm). To
remedy this problem, we currently place an upper bound
on the number of objects traversed by the extractor. In our
experiments, we found that on an idle system, the num-
ber of data structures in the kernel varies between 40,000
and 65,000 objects. We therefore place an upper bound of
150,000; the data structure extractor aborts the collection of
new objects when this threshold is reached. In our experi-
ments, this threshold was rarely reached, and even so, only
when the system was under heavy load.

4.3. The invariant generator
In the training mode, the output of the data structure ex-

tractor is used by the invariant generator, which infers likely
data structure invariants. These invariants are used as spec-
ifications of data structure integrity.

To extract data structure invariants, we adapted
Daikon [14], a state of the art invariant inference tool.
Daikon attempts to infer likely program invariants by ob-
serving the values of variables during multiple executions
of a program. Daikon first instruments the program to emit
a trace that contains the values of variables at selected pro-
gram points, such as the entry points and exits of functions.
It then executes the program on a test suite, and collects
the traces generated by the program. Finally, Daikon an-
alyzes these traces and hypothesizes invariants—properties
of variables that hold across all the executions of the pro-
gram. The invariants produced by Daikon conform to one
of several invariant templates. For example, the template x
== const checks whether the value of a variable x equals a
constant value const (where const represents a symbolic
constant; if x has the constant value 5, Daikon will infer x
== 5 as the invariant). Daikon also infers invariants over
collections of objects. For example, if it observes that the
field bar of all objects of type struct foo at a program
point have the value 5, it will infer the invariant “The fields
bar of all objects of type struct foo have value 5.”

We had to make three key changes to adapt Daikon to
infer invariants over kernel data structures.
(1) Inference over snapshots. Daikon is designed to
analyze multiple execution traces obtained from instru-
mented programs and extract invariants that hold across
these traces. We cannot use Daikon directly in this mode be-
cause the target’s kernel is not instrumented to collect exe-
cution traces. Rather, we obtain values of data structures by
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asynchronously observing the memory of the target kernel.
To adapt Daikon to infer invariants over these data struc-
tures, we represent all the data structures in one snapshot of
the target’s memory as a single Daikon trace. As described
in Section 4.2, the data structure extractor periodically re-
constructs snapshots of the target’s memory. Multiple snap-
shots therefore yield multiple traces. Daikon processes all
these traces and hypothesizes properties that hold across all
traces, thereby yielding invariants over kernel data struc-
tures
(2) Naming data structures. Because Daikon analyzes in-
strumented programs, it represents invariants using global
variables and the local variables and formal parameters of
functions in the program. However, because Gibraltar aims
to infer invariants on data structures reconstructed from
snapshots, the invariants output by Gibraltar must be rep-
resented using the root symbols. Gibraltar represents each
data structure in a snapshot using its name relative to one
of the root symbols. For example, Gibraltar represents
the head of the all-tasks linked list, described in Sec-
tion 3.2, using the name init tasks->next task (here,
init tasks is a root symbol). The extractor names each
data structure as it is visited for the first time.
In addition, Gibraltar also associates each name with the
virtual memory address of the data structure that it rep-
resents in the snapshot. These addresses are used during
invariant inference, where they help identify cases where
the same name may represent different data structures in
multiple snapshots. This may happen because of deallo-
cation and reallocation. For example, suppose that the
kernel deallocates (and reallocates, at a different address)
the head of the all-tasks linked list. Because the name
init tasks->next task will be associated with different
virtual memory addresses before and after allocation, it rep-
resents different data structures; Gibraltar ignores such ob-
jects during invariant inference.
(3) Linked data structures. Linked lists are ubiquitous
in the kernel and, as demonstrated in Section 3, can be ex-
ploited subtly by rootkits. It is therefore important to pre-
serve the integrity of kernel linked lists. Daikon, however,
does not infer invariants over linked lists. To overcome this
shortcoming, we represented kernel linked lists as arrays in
Daikon trace files, and leveraged Daikon’s ability to infer
invariants over arrays. We then converted the invariants that
Daikon inferred over these arrays to invariants over linked
lists.

Daikon infers invariants that conform to 75 different tem-
plates [14], and infers several thousand invariants over ker-
nel data structures using these templates. In the discussion
below, and in the experimental results reported in Section 5,
we focus on five templates; in the templates below, var de-
notes either a scalar variable or a field of a structure.
(1) Membership template (var ∈ {a, b, c}). This
template corresponds to invariants that state that var only
acquires a fixed set of values (in this case, a, b or c). If this
set is a singleton {a}, denoting that var is a constant, then
Daikon expresses the invariant as var == a.
(2) Non-zero template (var != 0). The non-zero tem-

plate corresponds to invariants that determine that a var is
a non-NULL value (or not 0, if var is not a pointer).
(3) Bounds template (var ≥ const), (var ≤ const).
This template corresponds to invariants that determine
lower and upper bounds of the values that var acquires.

The three example templates discussed above corre-
spond to invariants over variables and fields of C struct
data structures. These invariants can be inferred over indi-
vidual objects, as well as over collections of data structures
(e.g., the fields bar of all objects of type struct foo have
value 5). Invariants over collections describe a property that
hold for all members of that collection across all snapshots.
(4) Length template (length(var) == const). This
template describes invariants over lengths of linked lists.
(5) Subset template (coll1 ⊂ coll2). This template
represents invariants that describe that the collection coll1
is a subset of collection coll2. This is used, for instance, to
represent invariants that describe that every element of one
linked list is also an element of another linked list.

The last two example templates are used to describe
properties of kernel linked lists. As reported in Section 5,
in our experiments, invariants that conformed to the Daikon
templates sufficed to detect all the control and non-control
data attacks that we tested. However, to accommodate for
rootkits that only violate invariants that conform to other
kinds of templates, we may need to extend Gibraltar with
more templates in the future. Fortunately, Daikon supports
an extensible architecture. Newer invariant templates can
be supplied to Daikon, thereby allowing Gibraltar to detect
more attacks.

4.4. The monitor
During enforcement, the monitor ensures that the data

structures in the target’s memory satisfy the invariants ob-
tained during training. As with the invariant generator, the
monitor obtains snapshots from the data structure extractor,
and checks the data structures in each snapshot against the
invariants. This ensures that any malicious modifications to
kernel memory that cause the violation of an invariant are
automatically detected.

4.5. Discussion
The invariants inferred by Gibraltar can be categorized

as either persistent or transient. Persistent invariants rep-
resent properties that are valid across reboots of the target
machine, provided that the target’s kernel is not reconfig-
ured or recompiled between reboots. All the examples in
Figures 1-6 are persistent invariants.

An invariant is persistent if and only if the names of
the variables in the invariant persist across reboots and the
property represented by the invariant holds across reboots.
Thus, a transient invariant either expresses a property of a
variable whose name does not persist across reboots or rep-
resents a property that does not hold across reboots. For ex-
ample, consider the invariant in Figure 8, which expresses a
property of a struct file operations object. This in-
variant is transient because it does not persist across reboots.
The name of this object changes across reboots as it appears
at different locations in kernel linked lists; consequently, the
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Attack Name Data Structures Affected
Rootkits from Packet Storm [5].
Adore-0.42, All-root, Kbd System call table
Kis 0.9, Linspy2, Modhide
Phide, Rial, Rkit 1.01,
Shtroj2, Synapsys-0.4
THC Backdoor
Adore-ng Vfs hooks,udp recvmsg
Knark 2.4.3 System call table, proc hooks
Rootkits from research literature [10].
Disable Firewall Netfilter hooks
Disable PRNG Vfs hooks

Table 1. Rootkits for Linux that modify control data. This
table shows the data structures modified by the rootkit.
Gibraltar successfully detects all the above rootkits. The in-
variants violated are all Object invariants, detected by the
Membership(constant) template.

number of next and prevs that appear in the name of the
variable differ across reboots.
init fs->root->d sb->s dirty.next->i dentry.next

->d child.prev->d inode->i fop.read == 0xeff9bf60

Figure 8. Example of a transient invariant. The name of
the variable changes across reboots.
The distinction between persistent and transient invari-

ants is important because it determines the number of in-
variants that must be inferred each time the target machine
is rebooted. In our experiments, we found that out of a to-
tal of approximately 718,000 invariants extracted by Gibral-
tar, approximately 40,600 invariants persist across reboots
of the target system.

Although it is evident that the number of persistent in-
variants is much smaller than the total number of invari-
ants inferred by Gibraltar (thus necessitating a training each
time the target is rebooted), we note that this does not reflect
poorly on our approach. In particular, the persistent invari-
ants can be enforced as Gibraltar infers transient invariants
after a reboot of the target machine, thus providing protec-
tion during the training phase as well. The cost of retraining
to obtain transient invariants can potentially be ameliorated
with techniques such as live-patching [9, 12], which can be
used to apply patches to a running system.

5. Experimental results
This section presents the results of experiments to test

the effectiveness and performance of Gibraltar at detecting
rootkits that modify both control and non-control data struc-
tures. We focus on three concerns:
• Detection accuracy. We tested the effectiveness of
Gibraltar by using it to detect both publicly-available rootk-
its as well as those proposed in the research literature [25,
10, 33]. Gibraltar detected all these rootkits (Section 5.2).
• False positives. During enforcement Gibraltar raises an
alert when it detects an invariant violation; if the violation
was not because of a malicious modification, the alert is a
false positive. Our experiments showed that Gibraltar has a
false positive rate of 0.65% (Section 5.3).

• Performance. We measured three aspects of Gibraltar’s
performance and found that it imposes a negligible moni-
toring overhead (Section 5.4).

All our experiments are performed on a target system
with a Intel Xeon 2.80GHz processor with 1GB RAM, run-
ning a Linux-2.4.20 kernel (infrastructure limitations pre-
vented us from upgrading to the latest version of the Linux
kernel). The observer also has an identical configuration.
5.1. Experimental methodology

Our experiments with Gibraltar proceeded as follows.
We first ran Gibraltar in training mode and executed a work-
load that emulated user behavior (described below) on the
target system. We configured Gibraltar to collect fifteen
snapshots during training. Gibraltar analyzes these snap-
shots and infers invariants. We then configured Gibraltar to
run in enforcement mode using the invariants obtained from
training. During enforcement, we installed rootkits on the
target system, and observed the alerts generated by Gibral-
tar. Finally, we studied the false positive rate of Gibraltar
by executing a workload consisting of benign applications.
Workload. We chose the Lmbench [23] benchmark as the
workload that runs on the target system. This workload con-
sists of a micro benchmark suite that is used to measure
operating system performance. These micro benchmarks
measure bandwidth and latency for common operations per-
formed by applications, such as copying to memory, read-
ing cached files, context switching, networking, file system
operations, process creation, signal handling and IPC oper-
ations. This benchmark therefore exercises several kernel
subsystems and modifies several kernel data structures as it
executes.
5.2. Detection accuracy

We report the results obtained in the use of the inferred
invariants to detect control and non-control data attacks.
Detecting control data modifications. We used fourteen
publicly-available rootkits [5] that modify kernel data struc-
tures to test the effectiveness of Gibraltar. We also include
two rootkits that have been proposed in the research liter-
ature [10] (Attacks 5 and 6 from Section 3); these rootkits
also modify kernel function pointers. Table 1 summarizes
the list of rootkits that modify kernel control data that we
used in our experiments.

Gibraltar successfully detects all the above rootkits.
Each of these rootkits violated a persistent invariant that
conformed to the template var == constant. Because
these rootkits modify kernel control flow, they can also be
detected by SBCFI. However, as discussed in Section 3, the
invariants on control data structures inferred by Gibraltar
implicitly determine a control flow integrity policy that is
equivalent to SBCFI.
Detecting non-control data modifications. We used four
non-control data attacks discussed in prior work [10, 25, 33]
to test Gibraltar. These attacks, and the invariants that they
violate were discussed in detail in Section 3. Table 2 sum-
marizes these attacks, and shows the data structures modi-
fied by the attack, the invariant type (collection/object) vio-
lated, and the template that classifies the invariant. Each of
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Attack Name Data Structures Affected Invariant Type Template
Entropy Pool Contamination struct poolinfo Collection Membership
Hidden Process all-tasks list Collection Subset
Linux Binfmt formats list Collection Length
Resource Wastage struct zone struct Object Membership (constant)

Table 2. Rootkits that modify non-control data [10, 25, 33]. This table also shows the data structure modified by the attack, the
type of the invariant violated by the attack, and the template that this invariant conforms to.

the invariants that was violated was a persistent invariant,
which survives a reboot of the target machine.

5.3. Invariants and false positives

Invariants. As discussed in Section 4, Gibraltar uses
Daikon to infer invariants; these invariants express proper-
ties of both individual objects, as well as collections of ob-
jects (e.g.,, all objects of the same type; invariants inferred
over linked lists are also classified as invariants over collec-
tions). Table 3 reports the number of invariants inferred by
Gibraltar on individual objects as well as on collections of
objects. Table 3 also presents a classification of invariants
by templates; the length and subset invariants apply only
to linked lists. As this table shows, Gibraltar automatically
infers several thousand invariants on kernel data structures.

False Positives. To evaluate the false positive rate of
Gibraltar, we designed a test suite consisting of several
benign applications, that performed the following tasks:
(a) copying the Linux kernel source code from one direc-
tory to another; (b) editing a text document (an interac-
tive task); (c) compiling the Linux kernel; (d) downloading
eight video files from the Internet; and (e) perform file sys-
tem read/write and meta data operations using the IOZone
benchmark [27]. This test suite ran for 42 minutes on the
target. We enforced the invariants inferred using the work-
load described in Section 5.1.

The false positive rate is measured as the ratio of the
number of invariants for which violations are reported and
the total number of invariants inferred by Gibraltar. Ta-
ble 3 presents the false positive rate, further classified by
the type of invariant (object/collection) that was erroneously
violated by the benign workload, and the template that clas-
sifies the invariant. As this table shows, the overall false
positive rate of Gibraltar was 0.65%.

Invariants False Positives
Template Object Collection Object Collection
Membership 643,622 422 0.71% 1.18%
Non-zero 49,058 266 0.17% 2.25%
Bounds 16,696 600 0% 0%
Length NA 4,696 NA 0.66%
Subset NA 3,580 NA 0%

Table 3. Invariants and false positives classified by the
type of invariant and the template used to mine the invari-
ant. Gibraltar infers a total of 718, 940 invariants. Average
false positive rate: 0.65%.

5.4. Performance
We measured three aspects of Gibraltar’s performance:

(a) training time, i.e., the time taken by Gibraltar to observe
the target and infer invariants; (b) detection time, i.e., the
time taken for an alert to be raised after the rootkit has been
installed; and (c) performance overhead, i.e., the overhead
on the target system as a result of periodic page fetches via
DMA.

Training time. The training time is calculated as the cu-
mulative time taken by Gibraltar to gather kernel data struc-
ture snapshots and infer invariants when executing in train-
ing mode. Overall, the process of gathering 15 snapshots of
the target kernel’s memory requires approximately 25 min-
utes, followed by 31 minutes to infer invariants, resulting in
a total of 56 minutes for training.

Training is currently a time-consuming process because
our current prototype invokes Daikon to infer invariants af-
ter collecting all the kernel snapshots. Training time can
potentially be reduced by adapting Daikon to use an in-
cremental approach to infer invariants. In this approach,
Daikon would hypothesize invariants using the first snap-
shot, in parallel with the execution of the workload to pro-
duce more snapshots. As more snapshots are produced,
Daikon can incrementally refine the set of invariants. We
leave this enhancement for future work.

Detection time. We measure the detection time as the in-
terval between the installation of the rootkit and Gibral-
tar detecting that an invariant has been violated. Because
Gibraltar traverses the data structures in a snapshot and
checks invariants over each data structure, detection time is
proportional to the number of objects in each snapshot and
the order in which they are encountered by the traversal al-
gorithm. Gibraltar’s detection time varied from a minimum
of fifteen seconds (when there were 41,254 objects in the
snapshot) to a maximum of 132 seconds (when there were
150,000 objects in the snapshot). On average, we observed
a detection time of approximately 20 seconds.

Monitoring overhead. The Myrinet PCI card fetches raw
physical memory pages from the target using DMA; be-
cause DMA increases contention on the memory bus, the
target’s performance will potentially be affected. We mea-
sured this overhead using the Stream benchmark [22], a
synthetic benchmark that measures sustainable memory
bandwidth. Measurement is performed over four vector op-
erations, namely, copy, scale, add and triad and averaged
over 100 executions. The vectors are chosen so that they
clear the last-level cache in the system, forcing data to be
fetched from main memory. Gibraltar imposes a negligible
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overhead of 0.49% on the operation of the target system.

6. Conclusions
Kernel-level rootkits pose a significant and growing

threat to computer systems. Previously-proposed rootkit-
detection techniques largely detect attacks that modify ker-
nel control data; techniques that detect non-control data at-
tacks, especially on dynamically-allocated data structures,
require specifications of data structure integrity to be sup-
plied manually.

This paper presented Gibraltar, a tool that automatically
infers and enforces specifications of kernel data structure
integrity. Gibraltar infers invariants uniformly across con-
trol and non-control kernel data, and enforces these invari-
ants as specifications of data structure integrity. Our exper-
iments showed that Gibraltar successfully detects rootkits
that modify both control and non-control data structures,
and does so with a low false positive rate and negligible
performance overhead.
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